3,042 research outputs found

    Improving Tatonnement Methods of Solving Heterogeneous Agent Models

    Get PDF
    This paper modifies standard block Gauss-Seidel iterations used by tatonnement methods for solving large scale deterministic heterogeneous agent models. The composite method between first- and second-order tatonnement methods is shown to considerably improve convergence both in terms of speed as well as robustness relative to conventional first-order tatonnement methods. In addition, the relative advantage of the modified algorithm increases in the size and complexity of the economic model. Therefore, the algorithm allows significant reductions in computational time when solving large models. The algorithm is particularly attractive since it is easy to implement – it only augments conventional and intuitive tatonnement iterations with standard numerical methods.

    Improving Tatonnement Methods for Solving Heterogeneous Agent Models

    Get PDF
    This paper modifies standard block Gauss-Seidel iterations used by tatonnement methods for solving large scale deterministic heterogeneous agent models. The composite method between first- and second-order tatonnement methods is shown to considerably improve convergence both in terms of speed as well as robustness relative to conventional first-order tatonnement methods. In addition, the relative advantage of the modified algorithm increases in the size and complexity of the economic model. Therefore, the algorithm allows significant reductions in computational time when solving large models. The algorithm is particularly attractive since it is easy to implement - it only augments conventional and intuitive tatonnement iterations with standard numerical methods.

    Improving Tatonnement Methods for Solving Heterogeneous Agent Models

    Full text link
    This paper modifies standard block Gauss-Seidel iterations used by tatonnement methods for solving large scale deterministic heterogeneous agent models. The composite method between first- and second-order tatonnement methods is shown to considerably improve convergence both in terms of speed as well as robustness relative to conventional first-order tatonnement methods. In addition, the relative advantage of the modified algorithm increases in the size and complexity of the economic model. Therefore, the algorithm allows significant reductions in computational time when solving large models. The algorithm is particularly attractive since it is easy to implement - it only augments conventional and intuitive tatonnement iterations with standard numerical methods

    Application of A Distributed Nucleus Approximation In Grid Based Minimization of the Kohn-Sham Energy Functional

    Full text link
    In the distributed nucleus approximation we represent the singular nucleus as smeared over a smallportion of a Cartesian grid. Delocalizing the nucleus allows us to solve the Poisson equation for theoverall electrostatic potential using a linear scaling multigrid algorithm.This work is done in the context of minimizing the Kohn-Sham energy functionaldirectly in real space with a multiscale approach. The efficacy of the approximation is illustrated bylocating the ground state density of simple one electron atoms and moleculesand more complicated multiorbital systems.Comment: Submitted to JCP (July 1, 1995 Issue), latex, 27pages, 2figure

    Co-simulation of Continuous Systems: A Tutorial

    Full text link
    Co-simulation consists of the theory and techniques to enable global simulation of a coupled system via the composition of simulators. Despite the large number of applications and growing interest in the challenges, the field remains fragmented into multiple application domains, with limited sharing of knowledge. This tutorial aims at introducing co-simulation of continuous systems, targeted at researchers new to the field
    • …
    corecore